Optic flow detection is not influenced by visual-vestibular congruency

نویسندگان

  • Vivian Holten
  • Paul R MacNeilage
چکیده

Optic flow patterns generated by self-motion relative to the stationary environment result in congruent visual-vestibular self-motion signals. Incongruent signals can arise due to object motion, vestibular dysfunction, or artificial stimulation, which are less common. Hence, we are predominantly exposed to congruent rather than incongruent visual-vestibular stimulation. If the brain takes advantage of this probabilistic association, we expect observers to be more sensitive to visual optic flow that is congruent with ongoing vestibular stimulation. We tested this expectation by measuring the motion coherence threshold, which is the percentage of signal versus noise dots, necessary to detect an optic flow pattern. Observers seated on a hexapod motion platform in front of a screen experienced two sequential intervals. One interval contained optic flow with a given motion coherence and the other contained noise dots only. Observers had to indicate which interval contained the optic flow pattern. The motion coherence threshold was measured for detection of laminar and radial optic flow during leftward/rightward and fore/aft linear self-motion, respectively. We observed no dependence of coherence thresholds on vestibular congruency for either radial or laminar optic flow. Prior studies using similar methods reported both decreases and increases in coherence thresholds in response to congruent vestibular stimulation; our results do not confirm either of these prior reports. While methodological differences may explain the diversity of results, another possibility is that motion coherence thresholds are mediated by neural populations that are either not modulated by vestibular stimulation or that are modulated in a manner that does not depend on congruency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binocular disparity tuning and visual-vestibular congruency of multisensory neurons in macaque parietal cortex.

Many neurons in the dorsal medial superior temporal (MSTd) and ventral intraparietal (VIP) areas of the macaque brain are multisensory, responding to both optic flow and vestibular cues to self-motion. The heading tuning of visual and vestibular responses can be either congruent or opposite, but only congruent cells have been implicated in cue integration for heading perception. Because of the ...

متن کامل

Spatial reference frames of visual, vestibular, and multimodal heading signals in the dorsal subdivision of the medial superior temporal area.

Heading perception is a complex task that generally requires the integration of visual and vestibular cues. This sensory integration is complicated by the fact that these two modalities encode motion in distinct spatial reference frames (visual, eye-centered; vestibular, head-centered). Visual and vestibular heading signals converge in the primate dorsal subdivision of the medial superior tempo...

متن کامل

Convergence of vestibular and visual self-motion signals in an area of the posterior sylvian fissure.

Convergence of visual motion information (optic flow) and vestibular signals is important for self-motion perception, and such convergence has been observed in the dorsal medial superior temporal (MSTd) and ventral intraparietal areas. In contrast, the parieto-insular vestibular cortex (PIVC), a cortical vestibular area in the sylvian fissure, is not responsive to optic flow. Here, we explore o...

متن کامل

Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex.

Convergence of vestibular and visual motion information is important for self-motion perception. One cortical area that combines vestibular and optic flow signals is the ventral intraparietal area (VIP). We characterized unisensory and multisensory responses of macaque VIP neurons to translations and rotations in three dimensions. Approximately one-half of VIP cells show significant directional...

متن کامل

Reduction in sensitivity to radial optic-flow congruent with ego-motion

Visual motion, such as radial optic flow, is an important cue for perceiving direction during ego-motion. Several previous studies have reported that the perceived speed of a radial optic flow is underestimated when the represented ego-motion direction between radial optic flow and non-visual (such as vestibular or/and proprioceptive) information is congruent. In the present study, we examined ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018